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RO The results of atomistic calculations of long-period tilt boundaries, which were reported
O in the preceding parts I and II, are generalized and represented concisely by using
= two-dimensional lattices, called decomposition lattices. The basis vectors of a decom-

position lattice characterize the two fundamental structural elements composing all
boundaries in a continuous series of boundary structures. Conversely, the governing
condition on the basis vectors is that the boundary structure can change continuously
throughout the misorientation range between the boundaries represented by the basis
vectors. On assuming that no discontinuous changes in boundary structure occur at
non-favoured boundary orientations, and that all boundaries considered are stable
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56 A.P.SUTTON AND V. VITEK

with respect to faceting, the governing condition may be used to deduce selection rules
for adjacent favoured boundaries and the existence of other favoured boundaries in the
misorientation range between two given favoured boundaries. The necessary condition
for a discontinuous change in boundary structure to be possible at a non-favoured
boundary orientation is formulated.

Various aspects of intrinsic and extrinsic grain boundary dislocations (g.b.ds) are
treated. It is first shown that the observation of intrinsic g.b.d. networks in the trans-
mission electron microscope does not necessarily imply that the reference structure,
preserved by those g.b.ds, is a favoured boundary. Secondly, it is argued that extrinsic
g-b.ds provide imperfect steps with Burgers vector components parallel to the boundary
that do not exist in equilibrium high-angle tilt boundaries. Finally, an explanation of
the physical basis of plane matching dislocations is proposed.

A general classification of grain boundary properties is introduced that is based on
the results of this investigation of grain boundary structure. It is argued that only
properties, such as grain boundary diffusion, that depend exclusively on the atomic
structure of the boundary core may be used to detect favoured boundaries. Favoured
boundaries exist at those misorientations where such a property is continuous but its
first derivative, with respect to misorientation, is not. Grain boundary diffusion, the
energy against misorientation relation and grain boundary sliding and migration are
then discussed.

1. INTRODUCTION

The preceding parts I and IT were concerned with the structure of tilt boundaries in pure cubic
metals. In this paper we shall first generalize the results of those calculations by introducing a
new concept, which we call the decomposition lattice. This lattice is a graphical means of
representing the structures of all non-favoured boundaries in the misorientation range between
two adjacentfavoured boundaries. Conversely, the requirement thatall non-favoured boundaries,
between two adjacent favoured boundaries, can be represented on a decomposition lattice
imposes selection rules, of a geometrical nature, on the adjacent favoured boundaries. Further-
more, provided certain assumptions are made it is possible to determine a minimum number of
boundaries, between two given favoured boundaries, that must also be favoured to satisfy these
geometrical rules. Consequently such favoured boundaries are not necessarily low energy
boundaries.

Section 4 is concerned with grain boundary dislocations (g.b.ds). In parts I and IT it was
found that the most appropriate choice of reference structure, for defining the secondary dis-
location content of a non-favoured boundary, is the favoured boundary, the units of which are
the predominant fundamental structural elements of the non-favoured boundary. The use of
alternative secondary dislocation descriptions is discussed and it is shown that secondary dis-
locations of these equivalent descriptions may sometimes be detected in the transmission electron
microscope, rather than those based on the appropriate favoured boundary reference structure.
Some distinctions are made between intrinsic and extrinsic g.b.ds in terms of their structure and
properties. These include the occurrence of steps associated with g.b.d. cores and the direction
of the Burgers vectors. The process of the absorption of an extrinsic g.b.d. into an array of intrinsic
g.b.ds is discussed. Sutton (1982) has shown that the concepts of favoured and non-favoured
boundaries are also applicable to the structures of (001) twist boundaries, calculated by
Bristowe & Crocker (1978) using empirical potentials for copper and nickel. The extension of
the present scheme to mixed tilt and twist boundaries is discussed and an explanation of the
physical origin of ‘ plane matching’ dislocations (Schindler et al. 1979) is proposed.
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A general classification of the properties of grain boundaries is proposed in §5.1. This classifi-
cation indicates which properties may be used to determine whether a boundary is favoured or
non-favoured. The energy against misorientation relation is shown to be an unreliable method of
determining favoured boundaries. Finally, self-diffusion along grain boundaries, the energy
against misorientation relation, and sliding and migration of grain boundaries are discussed in
the light of the results of the structural investigation.

2, THE DECOMPOSITION LATTICE

In this and the following section we shall be concerned with tilt boundaries sharing the same
tilt axis and belonging to the same £-system (see part II). It is assumed that these boundaries are
all stable with respect to faceting. Consider two adjacent favoured boundaries and let A and B
label their units. Let u, and ug be the vectors characterizing those units respectively (see partI).
For simplicity we assume that continuity of boundary structure exists throughout the mis-
orientation range between these favoured boundaries. Hence all the intervening non-favoured
boundaries are composed of A and B units. The generalization to the case where an isolated
discontinuity occurs between two favoured boundaries is discussed below. Consider a non-
favoured boundary in which there are # A units for every y B units, where x and y are relatively
prime integers. The vector I bounding the primitive cell of this boundary (see part I), perpen-
dicular to the tilt axis, is

I =xu,+yug. (1)
Thus I characterizes a unit of this non-favoured boundary. If the boundary is not centred (see
part I) then the period vector of the boundary, p, equals I; otherwise p = nl, where 7 is (an
integer) equal to the number of atomic planes perpendicular to the tilt axis in one crystal period
along the tilt axis. Therefore ! is not a crystal lattice vector in centred boundaries. When x and y
are allowed to take on any positive integer values, equation (1) defines a two-dimensional lattice
with basis vectors u, and ug. We call such a lattice a decomposition lattice because each lattice
site corresponds to a specific decomposition into A and B units. The vector in the decomposition
lattice joining the origin (at (0, 0)) and a node (#, y) in the lattice is given by equation (1), where
x, y are positive integers. If x and y are relatively prime, then this vector is a primitive vector of
the decomposition lattice (p.d.l. vector). Thus p.d.l. vectors characterize units of the intervening
non-favoured boundaries. Straight lines in the decomposition lattice emanating from the origin
pass through points that all represent the same boundary. We may choose to represent the
decomposition in either the upper or lower grain, since all represented boundaries belong to the
same £-system, and therefore p.d.l. vectors in the upper and lower grains are not independent.
To illustrate the decomposition lattice it will be recalled that in part I, §4.2 it was shown that
2 = 27(115),, 31.59°/[110] and X = 11 (113),, 50.48°/[110] are adjacent favoured boundaries
in aluminium. Units of these boundaries are characterized by u, = }[552], and up = 1[3382],,
respectively. Since continuity of boundary structure was found to occur throughout the inter-
vening misorientation range these vectors are the basis vectors of a decomposition lattice.
Vectors characterizing the units of all the intervening non-favoured boundaries are given by

I = 1x[552] + }y[332] (2)

where x and y are relatively prime integers. Thus each [, given by equation (2), is a p.d.l. vector
of this decomposition lattice.
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58 A.P.SUTTON AND V. VITEK

It is noted that the decomposition lattice does not provide the sequence of A and B units in
non-favoured boundaries, but only their relative numbers. The sequence of units is determined
uniquely by the requirement that it is continuous with the sequences of units in neighbouring
boundaries in the misorientation range, as shown in part I, §4.3.

In general the larger the p.d.l. vector the higher the value of X associated with the corre-
sponding boundary. By allowing x and y in equation (1) to become indefinitely large, but
maintained relatively prime, the vector characterizing the unit of an irrational boundary may
be approximated to any required accuracy. Thus, irrational boundaries, with infinite values of
2, are ‘represented’ by nodes in the decomposition lattice that are infinitely far from the origin.

Isolated discontinuous changes in boundary structure between two adjacent favoured
boundaries were discussed in part I, § 6. It was shown that the boundary structures on either side
of the discontinuity are composed of only two boundary units, but no units are common to both
sides. Continuity of boundary structure exists, therefore, on either side of the discontinuity. Hence
two decomposition lattices are required to represent all boundary structures when an isolated
discontinuity exists between two adjacent favoured boundaries. Let the favoured boundary
orientations be 6, and 0y and let thediscontinuity occurat 8,, where 6, < 6, < 65. All boundaries
in the range 0, < 6 < 0, are composed of two units, one of which belongs to the favoured
boundary at & = 6,. Thus all boundaries in this range may be represented on a decomposition
lattice with basis vectors equal to the vectors characterizing the two boundary units appearing
in that range. Similarly all boundaries in the range 6, < & < 65 may be represented on another
decomposition lattice with basis vectors equal to the vectors characterizing the two boundary
units appearing in that range.

3. SELECTION RULES FOR FAVOURED TILT BOUNDARIES

Consider a decomposition lattice with basis vectors #, and uy corresponding to the vectors
characterizing A and B boundary units. For the intervening boundary structures to change
continuously with misorientation, it is necessary that they are all composed of A and B units, and
may therefore be represented on this decomposition lattice. Therefore it must be possible to
construct the vector characterizing the unit of any intervening boundary by taking the appro-
priate linear combination of u, and ug, asin equation (1). This is the governing condition on the
basis vectors of a decomposition lattice. It is emphasized that fulfilment of this condition is
necessary but not sufficient for continuity of boundary structure, because, in addition, only one
sequence of A and B units satisfies continuity of boundary structure, as described in part I,
§4.3. However, in the absence of discontinuous changes in boundary structure at non-favoured
boundary misorientations, the governing condition imposes certain requirements upon adjacent
favoured boundaries.

The vector, I, characterizing the unit of a centred boundary is never a crystal lattice vector in
both grains, as explained in §2. Consider the case when A and B are units of non-centred
boundaries. Then u, and uy are period vectors and therefore crystal lattice vectors. All lattice
vectors of the corresponding decomposition lattice are therefore crystal lattice vectors. If centred
boundaries occur for the tilt axis and crystal Bravais lattice considered, the vectors charac-
terizing the units of centred boundaries in the intervening misorientation range will not be lattice
vectors of this decomposition lattice, and hence the governing condition is violated. Therefore

1 Centred boundaries do not occur only for (001) tilt axes in simple cubic crystals.
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at least one of the basis vectors of a decomposition lattice must characterize the unit of a centred
boundary, whenever centred boundaries occur. Provided no discontinuous changes in the
boundary structure exist at non-favoured boundary misorientations, the basis vectors of a
decomposition lattice characterize units of adjacent favoured boundaries. In that case at least
one of every two adjacent favoured boundaries must be centred. However, if a discontinuous
change in boundary structure does occur between two adjacent favoured boundaries then they
may both be non-centred. A condition exists that must be satisfied by non-centred favoured
boundaries for such a discontinuity to be possible, and therefore for those boundaries to be
adjacent. This condition is explained below.

If we assume that this type of discontinuity does not occur, the governing condition can also
be used to deduce whether other favoured boundaries must exist between two known favoured
boundary orientations, even if one of these known favoured boundaries is centred. Clearly two
favoured boundaries cannot be adjacent if there exist any boundaries in the intervening mis-
orientation range that cannot be represented on the corresponding decomposition lattice. In that
case, at least the intervening boundary, the unit of which is characterized by the smallest vector,
must be favoured. For example, suppose it has been determined in some f.c.c. metal that
2 =9(221),, 141.06°/[110] and X = 27 (115),, 31.59°/[110] symmetrical tilt boundaries are
favoured. Units of these boundaries are characterized by 1[114]; and }[552], respectively. The
vector 2[112], is the smallest one characterizing a unit of intervening boundaries, corresponding
to X = 3(111),. Clearly [112], is not a p.d.l. vector of the decomposition lattice with basis -
vectors 4[114]; and }[552],. Hence X = 3 (111), must also be favoured. Favoured boundaries
2 =3(111); and X = 9(221), can be adjacent because all intervening boundaries may be
represented on the decomposition lattice with basis vectors }[112], and }[114],. But X = 3 (111),
and X' = 27 (115), cannot be adjacent favoured boundaries because the shortest vector charac-
terizing a unit of an intervening boundary, i.e. 1[332],, which characterizes 2~ = 11 (113),, is
not a lattice vector of the decomposition lattice with basis vectors 1[112]; and }[552],. Hence
2 = 11 (113), must also be favoured. It may be verified that any vector characterizing a unit of
a symmetrical [110] tilt boundary in the range 31.59 < 6 < 141.06° may be represented on one
of the three decomposition lattices with basis vectors [552],, 1[832], or }[332],, 1[112], or
1[112],, 4[114],. Hence it is not necessary for any other boundaries in this range to be favoured.
Nevertheless, other boundaries in this range may be favoured for reasons of energetics. Therefore,
the above geometrical arguments determine the minimum number of favoured boundaries in
the misorientation range between two known favoured boundaries. A boundary that is favoured
in one material is not necessarily favoured in all materials with the same crystal structure. The
only ‘boundaries’ that are certain to be favoured in all crystals with the same Bravais lattice are
atomic planes in the ideal lattice. If the tilt axis is a symmetry rotation axis of the ideal crystal
then as the misorientation of all non-equivalent boundary structures, in a given £-system, tends
to zero the boundary plane tends to one of two distinct planes of the ideal crystal. The above
geometrical arguments can then also be applied to these known favoured ‘boundaries’ in each
£-system. In that case any boundaries that are necessarily favoured will be favoured in all
materials with the same crystal structure. For example, as the misorientation of [110] symmetrical
tilt boundaries tends to zero the boundary plane tends to (110) or (001) of the ideal crystal.
However, neither of these ‘ favoured [110] symmetrical tilt boundaries’ is centred in f.c.c. lattices.
Therefore the centred [110] symmetrical tilt boundary, whose unit is characterized by the
shortest vector, must be favoured. Thus 2 = 3 (111),, 109.47°/[110] is favoured in all f.c.c.
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60 A.P.SUTTON AND V. VITEK

crystals. It may be verified that the vectors characterizing units of all other [110] symmetrical
tilt boundaries in f.c.c. crystals are p.d.l. vectors of the two decomposition lattices with basis
vectors $[110], 1[112], and %[121],, [001]. Therefore there are no other favoured [110]
symmetrical tilt boundaries that are geometrically necessary in all f.c.c. metals.

The energies of favoured boundaries, which have to exist between two known favoured
boundaries for geometrical reasons, are not necessarily low compared with non-favoured
boundaries. That is because the reasons why they are favoured are based entirely on geometrical
considerations. Of course if the energy of a boundary is exceedingly high then the assumption of
stability with respect to faceting may no longer be tenable. In that case the above considerations
are inapplicable. We shall return to this point in § 5.3 where the energy against misorientation
relation is discussed.

It is emphasized that the above considerations regarding adjacent favoured boundaries are
valid only when discontinuous changes in boundary structure do not occur at non-favoured
boundary orientations. We shall now elucidate the necessary condition for the possible occurrence
of a discontinuous change in boundary structure, at a non-favoured boundary orientation
between two known favoured boundaries. Let the units, A and B, of two known favoured
boundaries be characterized by vectors 4, and ug. Either of these favoured boundaries may be
centred or non-centred. Similarly, let the shortest of vectors characterizing units from the
intervening boundaries be ¢ and the corresponding unit C. The necessary condition for a
discontinuous change in boundary structure to occur between the favoured boundary orien-
tationsis the existence of a boundary in the same ¢-system (including the ideal crystal) with a unit,
D, characterized by the vector uy,, such that u, +uy, = ug for uy) # uyz. When this condition is
satisfied, and it is energetically favourable for the discontinuous transition to occur, the two
continuous series of boundary structures involved in the discontinuity will be (i) boundaries
composed of A and D units and (ii) boundaries composed of B and C units. The discontinuous
transition will occur in the range of misorientations between the boundaries that are composed
of B and C units. On the other hand, the boundary composed of C units must always be favoured
if the above condition cannot be satisfied and u, + 1y # . As a first example assume that it has
been determined in some f.c.c. metal that X = 3 (112), and X = 17 (223), symmetrical [110] tilt
boundaries are favoured. Both of these boundaries are non-centred and they are characterized
by [111], and %[334], respectively. The boundary X' = 43(335), is the intervening boundary
whose unit is characterized by the smallest vector, i.e. 1[556],. The vector 1[556] may be obtained
by adding }[112], which characterizes a unit of X = 8 (111) boundary, to [111]. Hence it is
possible that a discontinuous change in boundary structure occurs between X' = 43 (335), and
2 = 17(228), boundary orientations. The discontinuity would involve the following two
continuous series of boundary structures: (i) boundaries composed of units of ' = 3 (112); and
2 =3 (111), and (ii) boundaries composed of units of X' = 43 (335), and X = 17(223),. If
indeed the discontinuity did occur then X = 3(112); and X = 17(223), would be adjacent,
non-centred, favoured boundaries. As a counter-example, assume that it has been determined
that X = 3(112); and X = 9 (114), symmetrical [110] tilt boundaries are favoured in some
f.c.c. metal. These non-centred boundaries are characterized by the vectors [111]; and [221],.
Then X = 11 (113), is the intervening boundary whose unit is characterized by the smallest
vector, i.e. 1[332],. No vector characterizing a unit of any [110] symmetrical tilt boundary can
be added to either [111], or [221], to give 1[332],. In addition [11T]; +[221], 5 }[332] and
therefore 2 = 11 (113); must be favoured.
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4. GRAIN BOUNDARY DISLOCATIONS
4.1. Reference structures for the intrinsic secondary g.b.d. content of non-favoured boundaries

Consider a non-favoured boundary in which the fundamental structural elements are A and B
boundary units. Let there be yB units for every xA units where x and y are coprime integers and
x > y. The atomistic calculations reported in parts I and IT show that B units coincide with the
centres of localized, distinct, stress fields of edge g.b.ds superimposed on the field of the ideal
favoured boundary composed of A units. Since those sources of edge dislocation stress fields do
not exist in the favoured boundary composed of A units, it was argued that the last boundary is
the most appropriate choice of reference structure for describing the secbndary g.b.d. (s.g.b.d.)
content of the non-favoured boundary.

The elastic field of the boundary extends away from the boundary plane up to distances
comparable with its period. If x/y is not an integer the spacing of B units is no longer uniform
and there may then exist a number of possible reference structures for describing the elastic field
far from the boundary. If #/y is close to an integer, I, then the long range field of the boundary
will appear to be caused by an array of g.b.ds based on the reference structure composed of
%, A units and y,,B units, where x,,/y,, = I (see also Read & Shockley 1950). If x/y = I+}
then the boundaries for which x/y =1 or I+1 are equally suitable reference structures for
describing the long-range field of the boundary. This ambiguity is the same as that which arises
in the most appropriate choice of reference structure for 1: 1 non-favoured boundaries, where
either of the corresponding favoured boundaries may be selected (see part I). For irrational
values of #/y there exists a hierarchy of possible reference structures for describing the long-range
field, in which the values of x/y for the reference structures are rational fractions such that x +y
decreases as one proceeds up the hierarchy. For example, for x/y = ,/3 one could choose
x/y = 173/100, 9/5, 2/1. As one proceeds up such a hierarchy the corresponding g.b.d. spacings
decrease and the Burgers vectors tend to increase. The limit of the hierarchy is always the integer
nearest to x/y. Sutton et al. (1981) called a reference structure that is composed of a mixture of two
different types of boundary unit a multiple unit reference structure (m.u.r.s.). G.b.ds based on
a m.u.r.s. were similarly termed ‘virtual’{ because although they describe the long-range field
of the boundary} they do not account for all the g.b.d. stress fields that are visible in the stress
field map of the boundary.

Properties of the boundary that are dependent only on the long-range field are insensitive to
whether the m.u.r.s. or favoured boundary reference structure is used. For example, it is well
known that the strong beam image of a dislocation obtained in the transmission electron micro-
scope by diffraction contrast is primarily caused by the scattering of electrons by the long-range
field of the dislocation. It is therefore quite likely that a strong beam image of a boundary near
to a m.u.r.s. will reveal the corresponding virtual s.g.b.d. network, provided there is sufficient
scattering for any contrast to be formed at all. By using weaker beam conditions the electron
scattering will occur in regions closer to the g.b.d. cores. Eventually, under very weak beam
conditions, it may be possible to resolve the secondary g.b.ds based on the favoured boundary
reference structure. It is clear, however, that the observation of intrinsic g.b.ds in a boundary

1 This terminology is consistent with the definition of a ‘virtual’ g.b.d. provided by Hirth & Balluffi (1973).

1 By the long-range field of the boundary we mean the field at distances comparable with the period of the
boundary structure. The boundaries discussed in this section do not possess a field that extends infinitely far, in
contrast to the field of a boundary containing imperfect steps as discussed in part II.

8 Vol. 309. A
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does not necessarily imply that the underlying structure is a favoured boundary: it may be a
m.u.r.s. If indeed a m.u.r.s. were interpreted as a favoured boundary it would imply that the
m.u.r.s. occurs at a discontinuous change in boundary structure, which is not true in general.

4.2. Extrinsic g.b.ds

Allg.b.ds discussed so far in this work have been an inseparable part of the equilibrium structure
of the boundary, i.e. intrinsic g.b.ds. Extrinsic g.b.ds enter the boundary from the adjoining
grains or they may be generated by Bardeen—Herring sources in the boundary. The distinction
between intrinsic and extrinsic g.b.ds can be maintained only by reference to the equilibrium
structure of the boundary before the extrinsic dislocations appeared. This distinction is redundant
if the extrinsic g.b.ds become fully incorporated into th< intrinsic g.b.d. array. Moreover,
extrinsic g.b.ds may always be regarded as intrinsic g.b.ds of a boundary nearby in the mis-
orientation/inclination range. Nevertheless, there are a number of expected differences between
extrinsic and intrinsic g.b.ds, which indicate that extrinsic dislocations may be very important
in some grain boundary processes whenever the distinction is meaningful.

First, as discussed in part I, §4.3 and part II, §4, intrinsic g.b.ds, which accommodate a
misorientation from some reference structure, are rarely expected to be associated with steps in
the boundary plane. It is only in very low 2 boundaries that it may be energetically favourable
for non-primitive, stepless d.s.c. dislocations to dissociate into primitive d.s.c. dislocations, with
associated steps. On the other hand a lattice dislocation entering a boundary must, in general,
create a step in the boundary plane. Whatever the subsequent dissociation of this lattice dis-
location into g.b.ds the total step height must be conserved. Thus extrinsic dislocations are
sources of steps in the boundary plane.

Secondly, in high-angle tilt boundaries the Burgers vectors of such intrinsic g.b.ds are always
perpendicular to the reference boundary plane (see part II, §3.2). Intrinsic dislocations in
low-angle asymmetrical tilt boundaries are lattice dislocations and generally have Burgers
vector components both parallel and perpendicular to the boundary plane. However, even in
this case the net Burgers vector content parallel to the boundary plane is zero. In general the
Burgers vectors of extrinsic g.b.ds have components both perpendicular and parallel to the
boundary plane. Thus extrinsic g.b.ds are sources of Burgers vector components parallel to
the boundary in high-angle pure tilt boundaries. As pointed out in part IT a change in the mean
boundary plane of a high-angle tilt boundary can be accomplished by an array of edge g.b.ds
associated with steps and possessing Burgers vector components parallel to the reference
boundary plane. Such a grain boundary has an elastic field that extends infinitely far and its
occurrence may be stress-induced as in the formation of lenticular deformation twins. The
structure of such a boundary is not the minimum boundary energy configuration because
boundaries that appear in the equilibrium Wulff plot do not possess elastic fields of infinite range.
The frequency of occurrence of these metastable interfaces presumably depends on the degree
to which the specimen is equilibrated.

The third difference between extrinsic and intrinsic g.b.ds is that the atomic structure and
stress field of an extrinsic g.b.d. can be entirely different from those of intrinsic g.b.ds associated
with the localized, distinct, edge g.b.d. stress fields seen in the stress field maps of non-favoured
tilt boundaries (see parts I and II). When a lattice dislocation enters the boundary it may
dissociate into extrinsic g.b.ds based on a variety of possible reference structures. If the Burgers
vectors of the dissociation products are not d.s.c. vectors of the coincidence system to which the
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non-favoured boundary belongs then the structure of the boundary will be changed far from
their cores. However, it seems physically unreasonable that the dissociation products are
governed by the boundary structure far away from their cores (say > 100 nm). On the contrary,
one expects the boundary structure near the dislocations to govern their Burgers vectors and the
atomic structure of their cores. In that case the local boundary structure is the reference structure
for the dissociation products. It is, nevertheless, clear that whereas the choice of reference
structure for describing the intrinsic g.b.d. content is arbitrary in that it does not influence the
atomic structure of the boundary, the dissociation products of a lattice dislocation that entered
the boundary are determined by the choice of reference structure. It is therefore possible for the
dissociation products of a lattice dislocation to have Burgers vectors and atomic structures that
are different from the intrinsic g.b.ds.

4.3. Plane-matching g.b.ds

The basic physical problem in understanding plane-matching dislocations (Pumphrey 1972)
is why a one-dimensional matching of planes at a boundary should be so favourable that it is
preserved by arrays of g.b.ds. As pointed out by Schindler et al. (1979) plane matching boundaries
cannot be regarded as ‘special’ because they are far from any low-2 orientation. Although no
atomistic calculations of mixed tilt and twist boundary structures have been made the results
presented in this work and by Sutton (1982) provide some clues as to what may be expected.

Any symmetrical tilt boundary may be regarded as a 180° twist boundary. Therefore, when
the tilt angle of a symmetrical tilt boundary is varied from some favoured misorientation we may
think of this as a tilt deviation applied to a twist boundary. The results presented in part I
indicate that such tilt deviations are accommodated by intrinsic, secondary, edge g.b.ds that
are always localized and distinct. These edge g.b.ds may be thought of as plane matching dis-
locations preserving the favoured symmetrical tilt (180° twist) boundary. Conversely, the result
that the structures of non-favoured boundaries, at all tilt misorientations between any two
favoured tilt boundaries, consist of specific sequences of only two fundamental structural
elements, suggests that all tilt boundaries will resist a perturbation. In that case a twist deviation
applied to any tilt boundary will result in the formation of networks of localized, distinct, screw
dislocations. These screw dislocations will appear as plane matching dislocations preserving the
orientation of planes perpendicular to the tilt axis of the original tilt boundary. These con-
siderations imply that it is not one-dimensional lattice matching that is the reason per se for the
existence of plane matching dislocations. It is rather that every tilt or twist boundary structure
has a well defined structure and resists twist or tilt deviations respectively. However, atomistic
calculations of mixed tilt and twist boundaries are required to substantiate this view further.

5. IMPLICATIONS FOR THE PROPERTIES OF GRAIN BOUNDARIES
5.1. General classification of grain boundary properties

To understand the relation between the structure and properties of grain boundaries it is
convenient to distinguish between three classes of properties. The first is the class of properties
that depend only on the structure of the core region of the boundary, i.e. up to about 5 A (0.5 nm),
say, on either side of the geometrical boundary plane. Examples of such properties are grain
boundary diffusion, the effectiveness of boundaries to act as sources and sinks for vacancies and
segregation effects. These properties govern such phenomena as the ability of a boundary to
slide and migrate, boundary cavitation and embrittlement. The second is the class of properties

8-2
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that depends only on the long-range elastic field of the boundary, e.g. the long-range interaction
of the boundary with crystal defects. The third is the class of properties that depend both on the
structure of the core region and on the long-range elastic field of the boundary. Examples are the
boundary energy and the rate at which boundaries are able to absorb impurity atoms.

When discussing the variation of some boundary property with misorientation it is important
first to ascertain to which of the above three classes the property belongs. For example, let us
assume that continuity of boundary structure exists throughout the misorientation range between
two adjacent favoured boundaries. Hence the structure of the boundary core region changes
continuously throughout this misorientation range. However, the long-range field of the
boundary changes at m.u.r.s. orientations in the same way as it does at favoured boundary
orientations. Therefore the first derivative of properties of the first class, with respect to boundary
misorientation, is expected to be continuous throughout the misorientation range
between the adjacent favoured boundary orientations. On the other hand a discontinuity
is expected in the first derivative of properties of the second and third classes at m.u.r.s.
orientations. If a discontinuous change in boundary structure occurs between the adjacent
favoured boundaries then different boundary units appear in the non-favoured boundaries on
either side of the misorientation, ¢;, at which the discontinuity occurs. If the property belongs to
the first class, then both the property itself and its derivatives change discontinuously at 0.
Furthermore, units introduced into boundaries on either side of a favoured boundary orientation
are different. Hence, at misorientations near a favoured boundary, a property of the first class
changes continuously but its first derivative does not. We may therefore conclude that only
properties of the first class should be used to detect favoured boundaries. Favoured boundaries
exist at those misorientations where the property itself is continuous but its first derivative, with
respect to boundary misorientation, is not.

We turn now to the general differences expected for the properties of favoured and non-
favoured boundaries. Non-favoured boundaries have longer-range elastic fields than favoured
boundaries, enabling the former to interact with lattice defects that are further away from the
boundary. Therefore properties of the second and third classes are expected to depend signifi-
cantly on whether the boundary is favoured or non-favoured. The ability of a boundary to
absorb or emit vacancies may be higher in non-favoured boundaries owing to the presence of
terminating planes associated with secondary dislocation stress fields. In general, however,
when we consider properties of the first class it is not obvious that large differences should occur
for favoured and non-favoured boundaries. This is demonstrated below for grain boundary
diffusion and has also been found in atomistic studies of the changes in boundary structure
caused by segregation of impurities (Sutton & Vitek 1982).

5.2. Grain boundary diffusion

Grain boundary diffusion occurs in the core of grain boundaries (see, for example, Peterson
1980), and it is therefore a property of the first class. Perhaps the most widely accepted model of
grain boundary diffusion is the so called ‘ pipe diffusion model’, where rapid diffusion is envisaged
along the cores of intrinsic g.b.ds. This model has been particularly successful in the low-angle
‘régime where the intrinsic g.b.ds are lattice dislocations and semi-quantitative agreement with
experiment has been obtained (Turnbull & Hoffman 1954). A non-favoured high-angle tilt
boundary is composed of two species of fundamental structural elements. There is no a priori
reason to expect one species of structural element to be an easier path for diffusion than another.
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Therefore in principle the boundary regions between the centres of intrinsic secondary g.b.d.
stress fields may be easier paths for diffusion. For example in part I, §4.2 the relaxed X' = 27 (115),
symmetrical [110] tilt boundary structure in aluminium was found to be favoured. Within each
unit (see fig. 1a of part I) the irregular pentagon is seen to be an easy path for diffusion. On the
other hand, the fundamental structural elements introduced at higher and lower angles of mis-
orientation belong to more densely packed favoured boundaries, i.e. X' = 11 (113), and the ideal
crystal, respectively. Therefore the cores of +%[115] d.s.c. dislocations, which preserve the
2" = 27(115), favoured boundary structure and are located at all the centres of the secondary
g.b.d. stress fields in the boundary, correspond to more densely packed regions of the non-
favoured boundaries. We therefore expect the grain boundary diffusion coefficient to decrease as
the deviation from the X = 27 (115), orientation increases. Herbeuval & Biscondi (1971)
measured the penetration of zinc into [110] symmetrical tilt boundaries in aluminium. They
found that the penetration parallel to the tilt axis was very low at both the 2 = 11 and ideal
crystal orientations. The penetration increased uniformly to a pronounced maximum at about
the 2' = 27 orientation. This is in complete agreement with the above considerations.

Rapid grain boundary diffusion along the cores of intrinsic secondary g.b.ds preserving a
favoured boundary reference structure may be anticipated near the coherent twin (X = 3 (111),
109.47°/[110]) in f.c.c. crystals. The coherent twin is always favoured and densely packed. Hence
ifrapid diffusion occurs at allin nearby boundaries, it must be along the cores of the corresponding
intrinsic secondary g.b.ds. However, the grain boundary diffusion coefficient is never expected
to be the same in two tilt boundaries equally misoriented, but in opposite senses, from a favoured
boundary orientation. This is because the core structures of corresponding intrinsic + b g.b.ds
are never the same, except when the reference structure is the ideal lattice (see part I, §4.3). The
measurements of Herbeuval & Biscondi (1971) show that the dependence of the penetration of
zinc into [110] tilt boundaries in aluminium is asymmetrical with respect to the coherent twin
orientation and there is a minimum at the coherent twin orientation.

5.8. The energy against misorientation relation

In this section we consider the variation of the boundary energy, v, with the boundary
misorientation, ¢, assuming that the other four macroscopic degrees of freedom of the boundaries
are fixed. Since the structures of twist boundaries may be classified in an analogous manner to
those of tilt boundaries, in terms of favoured and non-favoured boundaries (Sutton 1982), the
considerations of this section are equally applicable to twist boundaries. For tilt boundaries the
tilt axis and £-system are assumed fixed, while for twist boundaries the twist axis and boundary
plane are assumed fixed.

Since the stress fields of localized, distinct intrinsic g.b.ds are always associated with all
fundamental structural elements introduced into boundaries, after a small misorientation from
a favoured boundary orientation, there must always be cusps in y(0) at favoured boundary
orientations. However, because favoured boundaries do not necessarily possess very low energies
(see §3), it is possible that these cusps are shallow. At the same time cusps in y(60) also occur at
m.u.r.s. orientations. However, the depth of such a cusp depends on the Burgers vector of the
d.s.c. dislocations based on the m.u.r.s. Since a m.u.r.s. is frequently associated with a high value
of 2 the depth of the corresponding cusps may be too small to be detected experimentally.
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5.4. Grain boundary sliding and migration

It has been suggested that grain boundary sliding is effected by the movement of intrinsic
g.b.ds (see, for example, Kegg et al. 1973, Gates 1973). It is clear that for such a mechanism to
operate there must be a net component of the Burgers vectors of the intrinsic dislocations parallel
to the boundary plane. As pointed out in §4.2 a tilt boundary containing imperfect steps satisfies
this condition. However, since an interface of this type may always be transformed into one that
is free of imperfect steps by, for example, long-range diffusion, it is uncertain how significant this
is for grain boundary sliding. If the tilt boundaries in a specimen are equilibrated they will
contain only perfect steps and g.b.ds with Burgers vectors normal to the reference boundary
planes. Sliding can then occur only if extrinsic dislocations are introduced into the boundary.
This suggests an intimate relation between sliding of high-angle pure tilt boundaries and plastic
deformation of the grain interiors. Experiments by Watanabe & Davies (1978) on the sliding of
copper bicrystals demonstrate that the sliding rate is indeed closely related to the crystal defor-
mation. They found that this relation is less pronounced when the boundaries had a twist
component. The reason is that the sliding is then effected by both intrinsic screw g.b.d. glide and
the glide/climb of extrinsic g.b.ds.

Smith & Rae (1979) proposed a model for grain boundary migration based on the movement
of g.b.ds with steps associated with their cores. The local migration of the boundary plane when
such a dislocation moves is equal to the height of the associated step. Since intrinsic g.b.ds accom-
modating a misorientation from some reference structure are not normally expected to be
associated with steps they generally cannot be agents of grain boundary migration. At the same
time it seems unlikely that a tilt boundary that is associated with a long-range stress field will not
transform into one free of long-range stresses during recrystallization or grain growth. In that
case only perfect steps would exist in the boundary. Therefore a dislocation mechanism of the
migration of grain boundaries probably requires the presence of extrinsic g.b.ds possessing steps.
Extrinsic dislocations are, of course, plentiful during the recrystallization of a deformed matrix.
Recently, Balluffi & Cahn (1981) and Smith & King (1981) proposed a similar mechanism for
diffusion-induced grain boundary migration. It appears that extrinsic g.b.ds may also be
necessary in general for the operation of that mechanism.

6. CONCLUSIONS

1. The vectors characterizing the fundamental structural elements composing all boundaries
in a certain misorientation range are the basis vectors of a two-dimensional lattice, called the
decomposition lattice. Vectors characterizing the units of all the intervening boundaries are
primitive lattice vectors of this decomposition lattice (p.d.l. vectors).

2. Conversely, the basis vectors of a decomposition lattice must be such that the vectors
characterizing the units of all intervening boundaries are lattice vectors of this decomposition
lattice. This is the governing condition on the basis vectors of a decomposition lattice. In the
absence of discontinuous changes in boundary structure at non-favoured boundary orientations
it follows from this governing condition that, in every £-system, at least one of every two adjacent
favoured boundaries must be a centred boundary. Furthermore, for any two favoured boundaries
in a £-system, of which at least one is centred, other favoured boundaries may have to exist in the
misorientation range between them to satisfy the governing condition. The necessary condition
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for the possible occurrence of a discontinuous change in boundary structure at a non-favoured
boundary orientation was formulated. If this condition is satisfied, and it is energetically favour-
able for the discontinuity to occur, then two favoured boundaries may be adjacent and non-
centred and /or an intervening boundary that was formerly required to be favoured is no longer
favoured.

3. The observation of intrinsic g.b.ds in the transmission electron microscope does not imply
that the corresponding reference structure is a favoured boundary: it may be a multiple unit
reference structure (m.u.r.s.). This distinction is crucial for an understanding of the variation of
the atomic structure and certain properties of boundaries in the misorientation range because
discontinuous changes in boundary structure always occur at favoured boundary orientations
but not, in general, at m.u.r.s. orientations.

4. Several important differences between intrinsic and extrinsic g.b.ds exist, whenever the
distinction between these dislocations can be maintained. Extrinsic g.b.ds are generally associated
with steps in the boundary plane, in contrast to secondary intrinsic g.b.ds accommodating a
misorientation from some reference structure. In high-angle tilt boundaries the Burgers vectors
of intrinsic g.b.ds accommodating a misorientation from some reference structure are always
perpendicular to the reference boundary plane, whereas the Burgers vectors of extrinsic g.b.ds
may point in any direction. The dissociation of an incoming lattice dislocation may produce
extrinsic g.b.ds with no relation to the Burgers vectors or core structures of the underlying
intrinsic g.b.ds based on the appropriate favoured boundary reference structure.

5. On the basis of the results for tilt boundaries, presented in parts I and II, and twist bound-
aries, discussed by Sutton (1982), it is suggested that all tilt or twist boundary structures are
highly ordered. A tilt deviation applied to a twist boundary will therefore result in edge ‘ plane-
matching dislocations’ preserving the original twist boundary structure. Similarly, a twist
deviation applied to a tilt boundary will result in screw ‘ plane-matching dislocations’ preserving
the original tilt boundary structure. Thus one-dimensional lattice matching is viewed as a
consequence of, rather than a reason for, plane matching dislocations.

6. Grain boundary properties may be divided into three classes. Properties of the first and
second classes depend only on the core structure and long-range field of the boundary respect-
ively, whereas properties of the third class depend on both. Only properties of the first class
should be used to detect favoured boundaries. Favoured boundaries exist at misorientations
where a property of the first class is continuous, but its first derivative with respect to boundary
misorientation is not. The grain boundary self-diffusion coefficient is a suitable property for
determining which boundaries are favoured, but the grain boundary energy is not.

7. Rapid diffusion along the cores of intrinsic secondary g.b.ds, accommodating a. misorien-
tation from some favoured boundary reference structure, in high-angle tilt boundaries does not
necessarily occur because those cores may be more densely packed than the boundary regions
between them. However, if diffusion does occur predominantly along the cores of intrinsic
g.b.ds in a high-angle tilt boundary, then the diffusion coefficients are not equal in boundaries
equally misoriented from the favoured boundary orientation, but in opposite senses. This is
because the core structures of + b intrinsic secondary edge g.b.ds in high-angle tilt boundaries
are never identical.

8. Cusps in the energy against misorientation relation occur at both favoured boundary and
m.u.r.s. orientations, and in each case the cusp depth depends on the Burgers vectors of the
corresponding intrinsic g.b.ds. Most of these cusps are probably too shallow to be detected
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experimentally. Furthermore, the cusp at a geometrically necessary favoured boundary
orientation may be shallow because the energy of the favoured boundary can be relatively high.
9. The sliding rate of high-angle pure tilt boundaries will be, in general, closely coupled to
the rate of bulk deformation. Lattice dislocations entering the boundary are usually the pre-
dominant source of g.b.ds with Burgers vectors components parallel to the boundary, and hence
they become the agents of sliding.
10. Grain boundary migration by a dislocation mechanism at temperatures where long-range

__]‘ ~ diffusion is possible generally requires the presence of extrinsic g.b.ds, to provide the necessary
;5 - dislocations associated with steps.
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